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HDC in a Competitive World

• The economics of IT competition and
dependability

• Software Dependability Opportunity Tree
– Decreasing defects
– Decreasing defect impact
– Continuous improvement

• Conclusions and References
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Competing on Schedule and Quality
- A risk analysis approach

• Risk Exposure RE = Prob (Loss) * Size (Loss)

– “Loss” – financial; reputation; future prospects, …

• For multiple sources of loss:

sources
RE = ΣΣ  [Prob (Loss) * Size (Loss)]source
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Example RE Profile: Time to Ship
- Loss due to unacceptable dependability

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)
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Example RE Profile: Time to Ship
- Loss due to unacceptable dependability

- Loss due to market share erosion

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Few rivals: low P(L)
Weak rivals: low S(L)

Many rivals: high P(L)
Strong rivals: high S(L)

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)
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Example RE Profile: Time to Ship
- Sum of Risk Exposures

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Few rivals: low P(L)
Weak rivals: low S(L)

Many rivals: high P(L)
Strong rivals: high S(L)

Sweet
Spot

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)
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Comparative RE Profile:
Safety-Critical System

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Mainstream
      Sweet

               Spot

Higher 
S(L): defects

High-Q
Sweet
Spot
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Comparative RE Profile:
Internet Startup

Time to Ship (amount of testing)

RE =
P(L) * S(L)

           Mainstream
  Sweet

Spot

Higher 
S(L): delaysLow-TTM

Sweet
Spot

TTM:
Time to Market



11/28/01 ©USC-CSE 9

University of Southern California
Center for SoftwareEngineering CeBASE

Conclusions So Far
• Unwise to try to compete on both cost/schedule and

quality
– Some exceptions: major technology or marketplace edge

• There are no one-size-fits-all cost/schedule/quality
strategies

• Risk analysis helps determine how much testing
(prototyping, formal verification, etc.) is enough
– Buying information to reduce risk

• Often difficult to determine parameter values
– Some COCOMO II values discussed next
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“Quality is Free”

• Did Philip Crosby’s book get it all wrong?

• Investments in dependable systems

– Cost extra for simple, short-life systems

– Pay off for high-value, long-life systems
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Software Life-Cycle Cost vs. Dependability
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Software Life-Cycle Cost vs. Dependability
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Software Life-Cycle Cost vs. Dependability
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•  Low-dependability inadvisable 
   for evolving systems
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Software Ownership Cost vs. Dependability
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Conclusions So Far - 2

• Quality is better than free for high-value,     long-life
systems

• There is no universal dependability sweet spot
– Yours will be determined by your value model
– And the relative contributions of dependability techniques

– Let’s look at these next
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HDC in a Competitive World

• The economics of IT competition and
dependability

• Software Dependability Opportunity Tree
– Decreasing defects
– Decreasing defect impact
– Continuous improvement

• Conclusions
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Software Dependability Opportunity Tree
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Software Defect Prevention Opportunity Tree
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People Practices: Some Empirical Data

• Cleanroom: Software Engineering Lab
– 25-75% reduction in failure rates
– 5% vs 60% of fix efforts over 1 hour

• Personal Software Process/Team Software Process
– 50-75% defect reduction in CMM Level 5 organization
– Even higher reductions for less mature organizations

• Staffing
– Many experiments find factor-of-10 differences in people’s defect

rates
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Software Defect Detection Opportunity Tree
Completeness checking
Consistency checking
   - Views, interfaces, behavior, pre/post

conditions
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Orthogonal Defect Classification
- Chillarege, 1996
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Defect Impact Reduction Opportunity Tree
Business case analysis

Pareto (80-20) analysis

V/R-based reviews

V/R-based testing

Cost/schedule/quality
as independent variable
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Pareto 80-20 Phenomena

• 80% of the rework comes from 20% of the
defects

• 80% of the defects come from 20% of the
modules
– About half the modules are defect-free

• 90% of the downtime comes from < 10% of the
defects
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Pareto Analysis of Rework Costs
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Cost, Schedule, Quality: Pick any Two?

C

QS
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Cost, Schedule, Quality: Pick any Two?

C

QS

C

QS

•  Consider C, S, Q as Independent Variable
–  Feature Set as Dependent Variable
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C, S, Q as Independent Variable
• Determine Desired Delivered Defect Density (D4)

– Or a value-based equivalent
• Prioritize desired features

– Via QFD, IPT, stakeholder win-win
• Determine Core Capability

– 90% confidence of D4 within cost and schedule
– Balance parametric models and expert judgment

• Architect for ease of adding next-priority features
– Hide sources of change within modules (Parnas)

• Develop core capability to D4 quality level
– Usually in less than available cost and schedule

• Add next priority features as resources permit
• Versions used successfully on 17 of 19 USC digital library projects
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• Future trends intensify competitive HDC challenges
– Complexity, criticality, decreased control, faster change

• Organizations need tailored, mixed HDC strategies
– No universal HDC sweet spot
– Goal/value/risk analysis useful
– Quantitative data and models becoming available

• HDC Opportunity Tree helps sort out mixed strategies
• Quality is better than free for high-value, long-life systems
• Attractive new HDC technology prospects emerging

– Architecture- and model-based methods
– Lightweight formal methods
– Self-stabilizing software
– Complementary theory and empirical methods

Conclusions
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CeBASE Software Defect Reduction Top-10 List
- http://www.cebase.org

1.    Finding and fixing a software problem after delivery is often 100 times more expensive

       than finding and fixing it during the requirements and design phase.

2.    About 40-50% of the effort on current software projects is spent on avoidable rework.

3.    About 80% of the avoidable rework comes form 20% of the defects.

4.    About 80% of the defects come from 20% of the modules and about half the modules

       are defect free.

5.    About 90% of the downtime comes from at most 10% of the defects.

6.    Peer reviews catch 60% of the defects.

7.    Perspective-based reviews catch 35% more defects than non-directed reviews.

8.    Disciplined personal practices can reduce defect introduction rates by up to 75%.

9.    All other things being equal, it costs 50% more per source instruction to develop high-

       dependability software products than to develop low-dependability software products.

       However, the investment is more than worth it if significant operations and

       maintenance costs are involved.

10.  About 40-50% of user programs have nontrivial defects.


